Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Pathog ; 20(4): e1012137, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38603763

RESUMO

Interleukin-1 (IL-1) signaling is essential for controlling virulent Mycobacterium tuberculosis (Mtb) infection since antagonism of this pathway leads to exacerbated pathology and increased susceptibility. In contrast, the triggering of type I interferon (IFN) signaling is associated with the progression of tuberculosis (TB) disease and linked with negative regulation of IL-1 signaling. However, mice lacking IL-1 signaling can control Mtb infection if infected with an Mtb strain carrying the rifampin-resistance conferring mutation H445Y in its RNA polymerase ß subunit (rpoB-H445Y Mtb). The mechanisms that govern protection in the absence of IL-1 signaling during rpoB-H445Y Mtb infection are unknown. In this study, we show that in the absence of IL-1 signaling, type I IFN signaling controls rpoB-H445Y Mtb replication, lung pathology, and excessive myeloid cell infiltration. Additionally, type I IFN is produced predominantly by monocytes and recruited macrophages and acts on LysM-expressing cells to drive protection through nitric oxide (NO) production to restrict intracellular rpoB-H445Y Mtb. These findings reveal an unexpected protective role for type I IFN signaling in compensating for deficiencies in IL-1 pathways during rpoB-H445Y Mtb infection.


Assuntos
Proteínas de Bactérias , RNA Polimerases Dirigidas por DNA , Interferon Tipo I , Mycobacterium tuberculosis , Rifampina , Transdução de Sinais , Interferon Tipo I/metabolismo , Animais , Camundongos , Rifampina/farmacologia , RNA Polimerases Dirigidas por DNA/metabolismo , RNA Polimerases Dirigidas por DNA/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Mutação , Camundongos Endogâmicos C57BL , Farmacorresistência Bacteriana/genética , Tuberculose/microbiologia , Tuberculose/imunologia , Tuberculose/genética , Camundongos Knockout
2.
J Infect Dis ; 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38324907

RESUMO

Early innate immune responses play an important role in determining the protective outcome of Mycobacterium tuberculosis (Mtb) infection. Nuclear factor kappa B (NF-κB) signaling in immune cells regulates the expression of key downstream effector molecules that mount early anti-mycobacterial responses. Using conditional knockout mice, we studied the effect of abrogation of NF-κB signaling in different myeloid cell types and its impact on Mtb infection. Our results show that absence of IKK2-mediated signaling in all myeloid cells resulted in increased susceptibility to Mtb infection. In contrast, absence of IKK2-mediated signaling specifically in CD11c+ myeloid cells induced early pro-inflammatory cytokine responses, enhanced the recruitment of myeloid cells and mediated early resistance to Mtb. Abrogation of IKK2 in MRP8-expressing neutrophils did not impact either disease pathology or Mtb control. Thus, we describe an early immunoregulatory role for NF-κB signaling in CD11c-expressing phagocytes, and a later protective role for NF-κB in LysM-expressing cells during Mtb infection.

3.
Cell Rep ; 39(12): 110983, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35732116

RESUMO

Mycobacterium tuberculosis (Mtb) infects 25% of the world's population and causes tuberculosis (TB), which is a leading cause of death globally. A clear understanding of the dynamics of immune response at the cellular level is crucial to design better strategies to control TB. We use the single-cell RNA sequencing approach on lung lymphocytes derived from healthy and Mtb-infected mice. Our results show the enrichment of the type I IFN signature among the lymphoid cell clusters, as well as heat shock responses in natural killer (NK) cells from Mtb-infected mice lungs. We identify Ly6A as a lymphoid cell activation marker and validate its upregulation in activated lymphoid cells following infection. The cross-analysis of the type I IFN signature in human TB-infected peripheral blood samples further validates our results. These findings contribute toward understanding and characterizing the transcriptional parameters at a single-cell depth in a highly relevant and reproducible mouse model of TB.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Animais , Imunidade , Células Matadoras Naturais , Pulmão/metabolismo , Camundongos , Tuberculose/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA